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Abstract  

Physical scale and size effects influence the failure of 
structures and structural components. This can be 
especially true when failure is due to brittle, quasi-
brittle, or ductile fracture. When simulating ductile 
fracture using the finite element method, mesh size 
effects are also encountered. A common approach for 
analyzing the response of hull structures due to 
grounding and impact, for example, is to eliminate 
elements or to allow elements to split when a critical 
strain to failure is achieved. However, an important 
complication arises because of the observed mesh 
size sensitivity whereby strain to failure generally 
increases with finer finite element meshes. In this 
paper we explore the relation between the critical 
strain to failure,

fε , and the size of the “unit cell” or 
finite element. Our study focuses on applications for 
marine structures involving fracture of metals 
including, for example, aluminum, magnesium, and 
steel alloys. Extensions to two and three dimensional 
stress states are also discussed. 
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Introduction 

The study of size effects has a long history since 
Leonardo da Vinci, and interest in this topic has risen 
over recent decades due to the development of 
advanced simulation capability, particularly finite 
element analysis. Both deterministic and statistical 
aspects of scaling can influence structural and 
material failure theories (Bažant, 1997, 2000). The 
present study focuses on developing a deterministic 
methodology to predict mesh size effects for ductile 
fracture.  
When simulating ductile fracture using the finite 
element method, mesh size effects are encountered. It 
is common that finer mesh sizes are needed for better 

results when spacial gradients of deformation are high. 
However, this is not necessarily true when one encounters 
simulation processes in which material failure is significant as 
in, for example, impact, explosion, implosion, ship grounding, 
and sheet metal forming studies (Kuroiwa, Kawamoto and 
Yuhara, 1992, Kitamura, 2001, Servis, Samuelides, Louka and 
Voudouris, 2001). For such large scale simulations, a common 
approach for analyzing the response of hull structures due to 
grounding and impact, for example, is to eliminate elements 
(Li 2002) or to allow elements to split (Simonsen and 
Tornqvist., 2004) when a critical strain to failure is achieved. 
However, an important complication arises because of the 
observed mesh size sensitivity whereby strain to failure 
generally increases with finer finite element meshes.  
For decades, researchers found the value of strain to failure is 
mesh-dependent and attempts were made to find their relation, 
although the results are for the most part based on empirical 
relationships. For example, the International Ship and Offshore 
Structures Congress reviewed the state-of-the-art of rupture 
strain in research on ships’ collision and grounding (Wang et 
al. 2006), and organized a series of benchmark studies to 
compare some formulae (Paik et al. 2003). Lehmann and Yu 
(1998) presented an empirical power law model to handle the 
tri-axial rupture criteria, and it was improved by Broekhuijsen 
(2003). The range of critical values of rupture strain was 
studied by Okazawa et al (2004), Yamada et al (2005), and 
Alsos and Amdahl (2005). Other efforts, with particular 
emphasis on failure of aluminum, are reported by Lee and 
Wierzbicki (2005). In this investigation, it is argued that mesh-
size dependence can be determined by the constitutive 
relations and the microscale imperfections of the material, 
either geometric or material. Although theoretical studies of 
size effects are presented, notably Bažant and Guo (2002), and 
Engelen et al. (2006) using strain-gradient theory (Fleck and 
Hutchinson,1993, 2001), there still are gaps between the 
theory and industrial application. The purpose of this study is 
to explain size effects physically and present a methodology to 
predict size effects for marine structures involving ductile 
fracture of metals including aluminum, magnesium, and steel 
alloys.  
Damage and fracture models of various complexities consider 
the nucleation, growth and coalescence of voids in a 
homogenous matrix such as the classical references by 
McClintock (1968, 1971), Rice and Tracey (1969), Gurson 
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(1977), and Needleman and Tvergaard (1984). 
Implementation of plasticity and damage models in 
finite element codes often involves the use of a 
material characteristic length or involves explicitly 
modeling the micro structural features. In the present 
study, this kind of constitutive model is also used 
together with the simplified power law plasticity 
model. Initiating from the one dimensional analysis, 
extensions to two and three dimensional stress states 
are also discussed.  

Problem Formulation 

An intuitional idea about size effect is shown in Fig. 1 
qualitatively. It is obvious that the average strain in 
mesh 2 is larger than that in mesh 1, at the time when 
fracture is occurring. In fact, within subsets of mesh 
2, facture is in fact complete; a continuum description 
of the strain in such zones leads to infinite strains. To 
study size effects quantitatively, a simplified three-
piece-cell, shown in Fig. 2, is used (Li and Karr 
2007(a)) representing a typical unit cell or single 
finite element. Different from typical finite element 
descriptions with homogeneous stress and strain, it 
has an imperfect part and allows strain localization. 
The total strain and nominal stress of this cell is then 
considered in a manner similar to uniform averaged 
stresses and strains of conventional finite elements. 
 
 
 
 
 
 
 
Fig. 1: Necking of a copper tensile specimen with 

profusion voids and central crack  (from 
Garrison and Moody, 1987) 

 

 
 
 
 
 
 

Fig. 2: Three-piece-cell  

The fracture strain will be mesh-independent if the 
material is ideally incompressible and perfectly 
homogeneous. However, there are always 
imperfections within the material and strain 
localization is often concentrated at sites such as 
micro voids, inclusions and cracks etc. The parameter 
we use to describe the size of the imperfect part is 
defined as: 

0

0

L
Li=λ

 (1) 

where, 0iL is the characteristic size of microscale material 
imperfection, considered here a material property. 0L  is the 
initial length of the whole cell, (it thus directly describes mesh 
size). Equation (2) is derived (Li, 2006, Li and Karr 2007b) by 
using compatibility conditions, which is satisfied until fracture 
occurs. 

ihtotal eee εεε λλ +−= )1(  (2) 

where, totalε is the total true strain of the cell, 
hε and 

iε are the 
true strains in the homogeneous piece and imperfect piece, 
respectively. 
For the multi-piece-cell, which is more realistic than the three-
piece-cell, the total fracture strain of the whole cell will be  
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where, 
iλ and 

iε is the geometric parameter and true strain in 
each part. 
Rearranging equations (1) and (2), the quantitative relation 
between the strains within the homogeneous and imperfect 
part at fracture is 
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and where * *,h iε ε  are true strains at fracture in the 
homogeneous part and imperfect part respectively and can be 
determined by constitutive bifurcation criteria, either one-
dimensional or multiple-dimensional. For one-dimensional 
stress control loading conditions, it corresponds to the 
maximum load with strains concentrated in the imperfection 
zone.  Also, f represents the size of imperfection and n is the 
material property index for the power law plasticity equation 

nKσ ε= . 

Size effects for power law plastic material 

For incompressible power law plasticity, where n is the index, 
the quantitative relation between the strains within the 
homogeneous and imperfect parts is: 

( ) ih efe n
i

n
h

εε εε −− −= 1  (6) 

Here, the parameter f  is the size of the geometric 
imperfection of the three-piece cell, representing the cross 
section area reduction. It can be shown, with 0,f = that the 
maximum nominal stress is / nK nσ =  obtained at 

i nε = . This 

Li0 

L0 

A0 P P i h h 

Mesh 1 

Mesh 2 



ABS TECHNICAL PAPERS 2007 

Mesh Size Effects in Simulating Ductile Fracture of Metals  249 

is the Considère criterion (see also Malvern, 1969). 
Returning to equation (6), the relationship between 

iε  
and

hε  can be established for various values of f . For 
nonzero values of f , the curves contain turning 
points where the strain in the imperfect zone 
increases and the strain in the homogeneous portions 
decreases, hence indicating the localization of strain 
and the onset of fracture. This is shown in Fig.3 
where the bifurcation strains or fracture points are 
obtained as: 
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Fig. 3: Fracture points determined by Strain Bifurcation 

Diagram for different geometric imperfections   

The ‘LambertW’ in equation (7) represents the 
Lambert W function, which has the form 

zezW zW =)()(  (see for example Corless, et al., 
1996). Substituting equation (7) into equation (5) and 
equation (4), the influence of the geometric 
imperfection f and the material hardening index n on 
the size effects can be obtained. Shown in Fig. 4 are 
the effects of varying f . 

 

 
Fig. 4: Effects of imperfection size on the ratio of 

fracture strains for various values of the area 
ratio. 

The size effects predicted by equation (4), (5) are compared 
with the FEM analysis performed by Li et al. (2002). Since the 
micro parameters of the material are not known, we use the 
least square method with two parameters (a and b) 
optimization to fit the curve from the FEM analysis, see Fig. 5. 
The trend is captured by these formulae. If the micro scale 
parameters are known, equations (4) and (5) provide a 
quantitative relation to predict the fracture strain input in FEM 
analysis for given mesh size of the FE model.  
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Fig. 5: Comparison between FEM results and analytical relation  

Size effects prediction  

With the development of tomography technology, the 
imperfection of the specimen can be measured (Weiler, et al 
2005). Thus quantitative prediction of size effects is possible. 
Die-cast magnesium alloy AM60B samples were examined by 
Weiler and colleagues with the use of X-ray tomography (Fig. 
6). The size and locations of pores in five tensile samples were 
obtained from the X-ray tomography data. In this section the 
size effects of AM60B is predicted by using data provided in 
Weiler’s experiments, which is an application of the 
methodology described above. 

 
Fig. 6: 3D X-ray image for specimens in Weiler’s experiment and 

image of final fracture (from Weiler et al., 2005) 

 

The yield function of the randomly voided material developed 
by Gurson (1977) was modified by Tvergaard and Needleman 
(1984). This function is referred to as the GTN model, which 
is shown in equation (8). 
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Here, mY is the flow stress of the matrix material, 

iσ are the principal values of the Cauchy stress, 
and

gf is the current volume fraction of voids. For 

spherical voids, 12 =q , and for cylindrical voids 

32 =q . The incremental constitutive relation is 
developed by Needleman and Triantafyllidis (1978) 
as follow: 
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For plastic loading  
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The stress strain curves and fracture stresses and 
strains were obtained from Weiler, et al’s test of 
simple tension. In this section, the fracture strains and 
stresses predicted by GTN model are compared with 
those obtained from the experiments.  
We use the cross section with the largest pores to 
serve as the imperfection portion in the model. Since 
the samples were thin, the area porosity is set equal to 
the volume porosity and the GTN model is used. For 
samples 1, 2, 3 and 4 the porosities in the 
imperfection regime are 0.0075, 0.0165, 0.04, and 
0.062, respectively; and the porosities in 
homogeneous regime are 0.001, 0.002, 0.007 and 
0.013, respectively. The stress strain relation from the 
experimental data approximately follows the power 
law with hardening exponent n=0.14, this value is 
used for the matrix of all samples. Fig. 7 shows that, 
with the parameter 1q = 1.9, the modified Gurson 
model can predict the fracture strain and fracture 
stress accurately. 

 
Fig. 7: Comparison of fracture stress and strain 

predictions and test results 

Since the specimens used in Weiler’s experiment 
were of constant length, the size effects are not 
obvious. However, if one was to simulate the results 
of the experiments using the finite element method, 
size effects do arise. To simulate the experiments, we 

model the cross section with largest pore to extend to a 
homogeneous zone with length 1mm encompassing the entire 
width and thickness of the sample and located at the center. 
The volume porosity of this zone remains unchanged at 0.062. 
All the material properties outside this zone are the same as 
before. Also, 1/8 of the specimen is used in a finite element 
model with mesh size 0.5mm, shown in Fig. 8. Shear free end 
and axial symmetric boundary conditions are used to simulate 
simple tension.  
Four ‘elements’ of different sizes with the same size of 
imperfection are studied. The size of the ‘elements’ are 3mm, 
6mm, 12mm and 25mm separately. The total strain of these 
models when fracture occurs is considered the “strain to 
failure” of the ‘elements’. A porous plastic constitutive model 
is used in the simulation using the computer program 
ABAQUS (2004). 
 

 
Fig. 8: ABAQUS for strain localization 

The constitutive bifurcation in the imperfect zone is used as 
our fracture criterion. It is predicted by the three-dimensional 
constitutive bifurcation criteria and the results are shown in 
Fig. 9, which indicates that * 0.115iε = . 
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Fig. 9: Constitutive bifurcation in the imperfect zone predicted by 

the GTN model 

 
Fig. 10 shows that when the displacement of the end of the 
total FE model reaches 0.395mm, the elements outside the 
imperfection part begin to unload. This state can be treated as 
the initiation of fracture in simulation, because normally in a 
material coupon test, fracture takes place shortly after this 
point. In the simulation, it is assumed that fracture occurs 
when the strain in the imperfect part reaches 0.115. For a 
sample length of 25 mm, the overall average fracture strain is 
0.0238 and the data predicted by the GTN model is 0.0236; 
this corresponds to a strain in the homogeneous portion of 
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0.0276, which is close to the experimental data of 
sample 4. The total or overall true strains for different 
‘element’ sizes are shown in Fig. 11 with the 
evolution of strain in the imperfect part. The 
corresponding fracture strain can be read from Fig. 11 
and is plotted in Fig. 12. 
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Fig. 10: Relation of displacement and strain 
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Fig. 11: Total strain and strain in imperfect zone outside 

the imperfect zone 

Using equations (4) and (5), with mmLi 10 = , 

115.0* =iε , 0276.0* =hε , The size effect is predicted 
by the solid line in Fig. 12. Very nice agreement with 
the results from the finite element analysis is shown 
in Fig. 12.  
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Fig. 12: Comparison of size effects obtained from FE 

simulation and Prediction by equation (4) and (5)  

Recent studies of the fracture of structural steels also 
emphasize the importance of characteristic length parameters. 
Material tests and analyses of mild, low-carbon steels were 
presented by Kanvinde and Deierlein (2006). They used both 
void growth and stress modified critical strain models for 
several steels. When incorporated in finite element models to 
simulate fracture of steel structures, a critical average value of 
strain is to be achieved over a volume of material to form a 
crack. The question again arises as to the size of the critical 
volume. Note that in some applications, the finite elements 
may generally be smaller than the critical volume, also 
expressed by the characteristic length l*. 
 
This issue is addressed also by Chi, Kanvinde and Deierlein 
(2006). Material specific parameters for A572 Grade 50 steel 
were found using notched tensile tests. Results of the tests 
were analyzed using the finite element method and fracture 
predictions based on various levels of characteristic lengths of 
.09mm, .20mm and .38 mm, with the upper and lower limits 
being estimates based on the material substructure. Their 
approach was to simulate fracture based on a given stress 
modified critical strain. The predicted end displacement at 
fracture increased as the characteristic length increased. Using 
the data provided in Table 1 presented by Chi et al., we 
reduced the critical strain to failure as the characteristic length 
increased in accordance with equation (4). Excellent 
agreement is found by applying this approach to the results of 
the three point bending tests and compact tension tests of 
Table 1 of Chi et al., as presented in Figure 13. In the figure, 
we have normalized the failure strains with respect to the value 
for the smallest characteristic length and we have used the 
smallest characteristic length for our Li0. 

0

0 .2

0 .4

0 .6

0 .8

1

1.2

0 2 4 6

L0 / Li 0

Fig.13: 
Prediction of Size effects for mild A572 Grade 50 steel 

Three-Dimensional Constitutive Bifurcation Criteria 
for Material Failure 

For ideally homogenous material, either compressive or 
incompressive, there is a critical three dimensional stress-
strain state *( , , )iσ σ ε ε&&  and *( , , )iε σ σ ε&& , in principal 
directions, when constitutive bifurcation occurs, in the theory 
of material instability. Li (2006) proposed three-dimensional 
constitutive bifurcation criteria for two bifurcation modes: 
splitting and shear band. 
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First, we assume fracture is caused by splitting in the 
direction perpendicular to the principal direction. 
Consider one cubic cell shown in Fig. 14(a), whose 
edges are parallel to the local principal directions. 
Thus the differential equilibrium equations in the 
local principal coordinates for this cell are first 
determined. For force equilibrium, we get 

( ) 0 , , 1, 2,3i j kL L i j k i j kσΔ = = ≠ ≠  (12) 

where iσ  is one of the principal stresses, ,j kL L  are 
the 

 
 (a) Splitting (b) Shear band 

Fig. 14: Sketch of bifurcation modes 

 

dimensions of the cubic cell in other two principal 
directions. Also, Δ  represents the difference between 
the force inside the necking band and that outside it. 
It functions like a total derivative. Introducing the 
definition of natural strain: 

1, 2,3i
i

i

L i
L

ε = =
&

&  (13) 

We find from equation (12),  

( ) 0i j k i i j kL Lσ σ σ ε ε⎡ ⎤+ + =⎣ ⎦& &&  (14) 

For the trivial solution 0iσ = , equilibrium equation 
is satisfied automatically. The non trivial solution is 
to let the bracket equal to zero, yielding a 
characteristic equation. Therefore, the characteristic 
equation for bifurcation is shown in equation (14) 
which is a general criterion for 3D fracture criteria 
based on the splitting mode: 

( ) 0i i j k i j kσ σ ε ε+ + = ≠ ≠& &&  (15) 

It should be noticed that for the strain control loading 
process, the stress state and state of stress rate depend 
on the strain state and the state of strain rate, which 
influence each other by, for example, a particular 
plastic flow rule. This criterion should be checked in 
all of the three principal directions to determine 
which one is satisfied first, then the bifurcation will 
occur in that direction. This criterion is not 
constrained by associative flow rule as Drucker’s 
postulate does. Any kind of plastic flow rule can be 

used. In fact, it can be applied to not only plastic material, but 
also all kinds of material models in continuum mechanics, 
either brittle or ductile, elastic or nonelastic. In addition, no 
assumption of small deformation is made.  
The bifurcation point and direction is determined by the 
current stress state and the state of stress and strain rate. To 
this point of view, it can also be applied to history dependent 
constitutive bifurcation. For the one dimensional case, if the 
incompressibility assumption is used, it is straightforward to 
show that it coincides with Considére’s criterion

1 1 1/d dσ ε σ= , 
by rearranging equation (14). 
Similarly, the 3D general criterion with periodic shear band 
bifurcation is proposed. In Fig. 14 (b), a unit cubic of material 
was cut along the principal directions. Assume the bifurcation 
mode will be a periodical shear band in the i-j plane; k is the 
direction orthogonal to the i-j plane, where i, j, k are the 
principal directions. It is assumed that the principal directions 
inside the shear band are the same as those outside it. Also, t is 
defined as the thickness in the k direction. Note the following: 

( ) 0 1,2,3it iσΔ = =  (16) 

0i i k i kσ σ ε+ = ≠&&  (17) 

This is the three-dimensional characteristic equations for 
bifurcation within the periodic shear band mode.  
The well known bifurcation criteria for simple tension and 
plane stress biaxial tension for incompressible power law 
plastic material with isotropic work hardening in sheet metal 
forming can be derived from the general three-dimensional 
criteria, too. The final analytical results are shown in Fig. 15, 
and the numerical results are exactly consistent with the 
analytical ones. It can be seen for the shear band mode, the 
triaxiality is always positive, while for necking mode, negative 
triaxiality can be obtained. 
The results from sixteen experiments in Bao’s thesis (2003) 
are also included. As is described in his thesis, all these 
specimens are made of Al 2024-T351, whose behavior is close 
to the power law with n = 0.21. Since the experiments are 
either one-dimensional or two-dimensional, it is expected that 
the analytical criteria can predict the fracture. The results are 
also shown in Fig. 15. The analytical criteria derived in this 
section provide a lower limit to the experimental results. 
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For the special case of biaxial tension (plane stress), 
the shear band criterion simplifies considerably for a 
power law plastic material with exponent n . As 
shown in Li (2006) the effective strain to failure is   

Tn 3
2~*

=ε
 (18) 

where the triaxiality, T, is defined in terms of the 
mean and effective stresses by: 

σ
σ
~
mT =  (19) 

This is qualitatively similar in form to the empirical 
relationships proposed by Kitamura (2001) and 
Broekhuijsen, 2003 and those shown by Lehmann & 
Yu 1998.  

Conclusions 

The relations found for size effect descriptions are 
derived based on localization models for fracture 
initiation. We note that these formulae show 
qualitatively similar relationships to the empirical 
curves provided by other authors. Our relations are 
derived for power law plastic materials and are shown 
to be in approximate agreement with more 
sophisticated void growth models. For uniaxial 
analyses, a single formula is presented in terms of the 
power law exponent, and the ratio of the microscale 
flaw length to the element length.  
A quantitative relation of size effects is proposed, 
equations (4) and (5), based on a three-piece-cell 
model. This logarithmic relation catches the trend of 
mesh size effects observed in finite elements 
simulation. Different materials have different mesh 
size effects. With the development of X ray 
tomography technology, the important microscale 
material properties are measurable. The imperfection-
induced nonuniform strain distribution is the physical 
reason of mesh size effects. Based on the 
methodology discussed in this paper, “strains to 
failure” along the principal directions according to 
different mesh sizes can be predicted accurately. In 
addition, it is shown the triaxiality effects can also be 
included in such analyses when three-dimensional 
localization models are adopted. 
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