Computational Fluid Dynamics in Offshore Applications

Jer-Fang Wu, Ph.D.

Singapore Offshore Technology Center
American Bureau of Shipping
May 15, 2009
Offshore Hydrodynamics

- Design challenges - MODU and FPU
 - Constantly challenged by the need to estimate the environmental loads more accurately and comprehensively
- Why environmental load estimate is a challenge?
 - Wide variety of load types
 - Wind, current, waves (nonlinear and random)
 - Complex physics
 - Turbulence, highly nonlinear/breaking waves and their interaction with offshore structures
CFD in Offshore Applications

Complexity of environment – Violent free surface

- Spray due to wave impact
- Run-up and wave breaking
- Green water / wave on deck
- Sloshing
Complexity of environment – Extreme Waves

Monster waves

- Freak waves (also known as rogue waves or monster waves) - relatively large ocean waves with $H > 2H_s$

25 m above the mean sea level
CFD in Offshore Applications

Analysis Difficulty due to Violent Waves

- Offshore platform design concerns
 - In structure strength design, wave loads is obviously important
 - Wave induced motions are also important to operation problems
- Determination of the wave loads and floater system response are difficult
 - Under violent (extreme) waves, hydrodynamic load and its induced structure motion are highly nonlinear
 - Floater system includes floater, risers, mooring system. The interaction among them is strong and they should be considered as a whole.
CFD in Offshore Applications

Complexity of environment – Turbulent Current

Current with varied magnitude and direction

The Campos Basin, off the southeastern coast of Brazil near Rio de Janeiro.
CFD in Offshore Applications

Complex physics behind the turbulent current

- VIV (Vortex Induced Vibration)
 - 2D geometry and inflow condition generates 3D flow structure downstream
 - Steady inflow associated with unsteady vortex shedding
 - Multi-risers cases: large motions (sometimes collision occurs) and strong interaction among risers
Fluid Flow Models

- Viscous flow model:
 - Navier - Stokes Equations

- Inviscid-rotational flow model:
 - Euler Equations

- Potential flow model – inviscid & irrotational:
 - Laplace Equations
Potential flow based simulation

- Potential flow theory
 - Inviscid fluid under irrotational motion
 - No capability for viscous effect dominated problems (VIV, VIM, FPSO roll motions)

- Commercial softwares
 - WAMIT, AWQA, MOSES, MLTSIM, LAMP
 - BEM based software
 - Weakly non-linear waves (2nd to 5th order Stokes’ waves)

- Limitations:
 - Highly nonlinear waves (breaking waves simulation is beyond the potential flow capability)
 - Large amplitude motions
 - Turbulent and viscous flow
CFD in Offshore Applications

- Potential flow based simulation (WAMIT) vs. measurement
Emerging CFD Based Analysis

- CFD simulations
 - Navier-Stokes equations based model
 - NS eqs. include all the physics for real fluid flows
 - Viscosity, turbulence, vortex motion
 - Capabilities to overcome the previous three handicaps in potential flow simulation
 - RANS model for turbulent flow
 - Free surface capturing method for violent waves
 - Overset grid for large motion
Free surface capturing method – level-set method

Equations:

- Navier-Stokes equations
- Continuity equation
- Energy equation

Boundary Conditions:

- Wall boundary
- Inlet boundary
- Outlet boundary

Initial Conditions:

- Initial velocity
- Initial pressure

Numerical Methods:

- Finite volume method
- Finite element method

Software Tools:

- ANSYS CFX
- Fluent
- OpenFOAM

Applications:

- Offshore engineering
- Marine structures
- Renewable energy (wind, wave)
CFD in Offshore Applications

Time domain simulation – sloshing

Transverse Motion, FLVL = 30%
Time Step = 0, Time = 0 sec

Transverse Motion, FLVL = 30%
Time Step = 0, Time = 0 sec
CFD in Offshore Applications

- Multi-risers VIV – large motion + multi-body interaction

VIV of four circular cylinders in a square array configuration, L/D=4, Re = 1 \times 10^3, m^* = 1.0, m^*\zeta^* = 0.005, U^* = 6.055

Vorticity (ω_z) contours
Viscous-inviscid coupling method

- Although CFD is powerful, the computation price is high, especially for time domain simulation (nonlinear problem) for large domain

- To enhance the computation efficiency, for the areas viscous effect is not important, simplified potential flow model should be used instead of the expansive RANS CFD computations
CFD in Offshore Applications

Applications of viscous-inviscid coupling method

Surface Effect Ship – $C_b = 0.6$
ABS – IHPC Collaborations

- IHPC - Institute of High Performance Computing, the leading high performance computing research institute in Singapore
- IHPC has up-to-date computing resources
CFD in Offshore Applications

ABS – IHPC Collaborations

• Full collaboration effort between ABS & IHPC since 2006

• Three Phases are planned for CFD in Offshore Application capability development:
 - Phase I – Infrastructure set-up for subsequent CFD R&D and offshore applications, 2006-2008
 - Phase II – Software development and validation of key modules, 2009-2011
 - Phase III – Provide engineering services for CFD related offshore applications, 2011 -
CFD in Offshore Applications

Closing Remarks

- Driven by offshore structure design for deeper water and harsher environment, prediction methods for hydrodynamic loading require capabilities for
 - violent free surface waves
 - large motion, and
 - turbulent simulation

- Most of off-the-shelf engineering tools for hydrodynamic analysis are
 - Potential flow theory based, BEM type software
 - WAMIT, AWQA, MOSES, MLTSIM, LAMP
 - Handicap to violent waves, large motion and turbulent flows
Closing Remarks

● The CFD capabilities may be enhanced by integrating the following features:
 ■ interface capturing methods - VOF, Level-Set
 • To account for violent free surface effects
 ■ Overset grid technique
 • To deal with violent floater motions and multi-body interactions
 ■ Viscous-inviscid coupling method
 • To reduce CFD computation cost

● ABS Singapore Offshore Technology Center (SOTC) is making considerable effort in promoting CFD in Singapore since 2006
Thank You!

www.eagle.org